Question 1 to 5 carry One Mark each

1.	Reaching a place of app If I had reached on the	•		•	arlier than the scheduled day. would I have been?	
	(a) one	(b) Two	(c)	Three	(d) Four	
2.	Choose the most approp	oriate phrase from the op	tions	given below to com	plete the following sentence.	
	The bus stopped to	more passenger	s.			
	(a) Take in	(b) Take on	(c)	Take up	(d) Take For	
3.	Choose the appropriate	sentence from the follow	ing o	ptions.		
	(a) She has been disch	arged since	(b)	She has since been	n discharged	
	(c) She has been since	discharged	(d)	She since has been	n discharged	
4.	Fill in the blank with an appropriate phrase.					
	The jet into	the air.				
	(a) Soared	(b) Soured	(c)	Sourced	(d) Sored	
5.	Choose the most approp	oriate word from the opti	ons g	given below to comp	blete the following sentence.	
	If I had known that you	u were coming, I		you at the airpo	ort.	
	(a) Would meet	(b) Would have met	(c)	Will have met	(d) Had met	
	tion 6 to 10 carry Two					
6.	_	can be logically inferred	from	the given statement	t.	
	"No other studied medic	•				
	(a) Helen only studied		` ′	Only Helen studied		
	(c) Helen studied only		` ′	Helen studied medi	•	
7.		cember is Rs. 720. If the	e fan	nily goes on vacation	for July to September is Rs. on for June and July and no?	
	(a) Rs. 500	(b) Rs. 600	(c)	Rs. 700	(d) Rs. 800	
8.					ose the alternative where the out not just from one of them.	
	1. Sonia is an actress.	Some actresses are pret	tty. S	onia is pretty.		
	2. All actors are pretty	y. Manoj is not an actor.	Man	oj is not pretty		
	3. Some men are cops	s. Some men are brave.	Some	e brave people are	cops.	
	4. All cops are brave.	Some men are cops. So	ome i	men are brave.		
	(a) only 3	(b) only 1	(c)	only 4	(d) 2 and 3	
9.	time and was supposed t 4,000 each day. If he con	o pay Rs. 50,000 for the mpletes the flyover after of	first one n	day of extra time. The nonth of stipulated ti	ct the flyover in the specified This amount increased by Rs. me, he suffers a loss of 10% crores of rupee? (One month	
	(a) 3.1	(b) 3.24	(c)	3.46	(d) 3.68	

ME: Full Length

GATE: Mock Test Paper

Examine the information given below. Who si to the imediate right of P among five person P,Q,R,S and T, facing north?

Two statements, labeled I and II, are given below. You have to decide whether the date given in the statements are sufficient for answering the question. Using the data given in the statements, you have to choose the correct alternative.

Statements:

- R is third to the left of Q and P is second to the right of R
- **II.** Q is the immediate left of T who is second to the right of P.
- (a) I alone is sufficient while II alone is not sufficient to answer the question
- (b) II alone is sufficient while I alone is not sufficient to answer the question
- (c) Either I (or) II is sufficient to answer the question
- (d) Neither I Nor II is sufficient to answer the question

Question 11 to 35 carry One Mark each

The system AX = 0 in 'n' variables has non-trivial solution if

(a) $\rho(A) = n$

- (b) $\rho(A) > n$
- (c) $\rho(A) < n$

2

The minimum possible positive imaginary part of $\ln(\sqrt{i})$ in degrees is 12.

 $\lim_{n\to\infty} \left(1 + \frac{\sin a}{n}\right)^n$ is equal to 13.

- (b) e^a
- (c) e
- (d) e^{2a}
- Which of the following method cannot be applied for locating complex roots of an equation 14.

(a) Bisection method

- (b) Regula Falsi
- (c) Secant method
- (d) Newton-Raphson
- The positive value of x for which the function $f(x) = \int_{0}^{x} (1-t^2)e^{-t^2/2}dt$ has an extremum is 15.

A wooden beam 200 mm × 200mm is simply supported on a span of 6m. When the beam is loaded with **16**. 14 kN load at each one-third span point, if failed. What is the modulus of rupture?

in N/mm²

ME: Full Length

GATE: Mock Test Paper

- If in a process on the shop floor, the specifications are not met but the charts for variables show control, 17. then which of the following action should be taken?
 - (a) changes the process
 - (b) change the method of measurement
 - (c) changes the worker or provide him training
 - (d) change the specification or upgrade the process
- 18. A velocity vector 'V' in 2-D flow is incline at an angle 'θ' to the x-axis. The resultant acceleration vector a
 - (a) will be always normal to V
 - (b) will be always parallel to V
 - (c) will have an inclination of $(90-\theta)$ to the y-axis
 - (d) will have an inclination θ to the x-axis which depends on the component of accleration
- 19. The axes of a three cylinder air compressor are at 120° to one another and their connecting rods are coupled to a single crank. The length of each connecting rod is 240 mm and the stroke is 160 mm. The reciprocating parts have a mass of 2.4 kg/cylinder. Determine the primary force if the engine runs at 2000 r.p.m.

- 20. The shear plane in case of bolts should
 - (a) be across threaded portion of shank
- (b) be parallel to axis of bolt
- (c) be normal to threaded portion of shank
- (d) never be across the threaded portion
- 21. The ratio of internal conduction resistance to surface convection resistance is known as
 - (a) Grashoff number
- (b) Biot number
- (c) Stanton number
- (d) Prandtl number

3

 100Ω strain gauge is bonded to a low carbon steel bar which has been subjected to tensile load. The 22. bar has a uniform cross-sectional area of 0.5×10^{-4} m² and Young's modulus of low carbon steel is 200 GN/m^2 . If a load of 50 kN produces a change of 1 Ω is gauge resistance then the gauge factor for the

strain gauge is

Air enters into a gas turbine at pressure 40 bar and 1047°C with velocity 200 m/s. It flows adiabatically 23. and leaves turbine at 1 bar with velocity 100 m/s. Determine the turbine output assume $\dot{m} = 1 \text{ kg/s}, C_p = 1.05 \text{ kJ/kg-K}, \gamma = 1.4$

- What is hunting of thermostatic expansion valve? 24.
 - (a) A variation of evaporator load with degree of superheat.
 - (b) A variation in pressure of the evaporator with variation of load.
 - (c) Alternate over feeding and starving of refrigerant flow in the evaporator.
 - (d) This is not used in connection with expansion valve.

ME	: Full Length	GATE : M	ock Tes	t Paper		4
25.	-	ot to exceed 90 N/mm ²			nade of plates of 1.5mm to exceed 60 N/mm ² , where the exceed 60 N/mm ² and the exceed 60 N/mm ² .	
		N/mm ²				
26.	The probability law the	hat determines the fract	ional def	ective is		
	(a) Poisson	(b) Normal		Binomial	(d) Exponential	
27.	Calculate the kinetic	energy correction fact	or 'α' fo	r the $\frac{u}{u_{\text{max}}} = \left[1 - \left(\frac{1}{u_{\text{max}}}\right)\right]$	$\left[\frac{r}{r_0}\right]^2$ in a circular pip	pe of
	radius 'r ₀ '					
28.		at 160 r.p.m. What wi		•	by an Oldham's coupling f sliding of the tongue of	
	(a) 0.45 m/s	(b) 0.302 m/s	(c)	0.8 m/s	(d) 0.35 m/s	
29.	Compression formula	is valid upto the slende	erness rat	rio of		
	(a) 10	(b) 20	(c)	30	(d) 40	
30.	In spite of large heat transfer coefficient in boiling liquids, fins are used advantageously when the entire surface is exposed to					
	(a) Nucleate boiling	(b) Film boiling	(c)	Transition boiling	(d) All modes of boiling	ıg
31.	•	-		-	atomic weight 56, densit and maintained at 18 V	-
		mm/s				
22	During the edichetic of					
32.	During the adiabatic contains contains contains contains contains and a second contains and a second contains a second c		(b)	Specific humidity	ramains constant	
	(c) Relative humidity		` ′	WBT remains cor		
33.			` ′		ar force would be maxir	mum?
	(a) at mid span	de ocum curres severur		under the smallest		iidiii.
	(c) under the largest	load	` ′	at either of the su		
34.	• •		1		eparated by a distance '	ď
	(a) 0	(b) ∞	(c)	-	(d) d	
35.	When a sheet of widt with the rollers having		e average	pressure acting bet	nm by using rolling oper tween the rollers is 350 or as 0.4	

kW

ME : Full Length

GATE: Mock Test Paper

Question 36 to 65 carry Two Marks each

		Amı	oere				
Which or	ne of the t	following o	cycle worki	ng with	in same temperatur	e limits has the highest work re	atio?
(a) Carn	ot cycle	(b)	Joule cycle	e	(c) Otto cycle	(d) Rankine cycle	
A fluid in	ndicate th	e following	g shear stre	ess and o	deformation rates;		
(du/dy)	(units)	0	1	2	4		
(τ)	(units)	10	15	20	30		
This fluid	l is classif	fied as					
a) New	tonian	(b)	Bingham p	lastic	(c) Dilatant	(d) Pscudo plastic	
		e taken as		225 M	Pa and 300 MPa r	espectively. The factor of safet	y on
						nelp of the thermometer placed	
n protection protectio	ve well fi and 1.5 n ² K and th	f the air st lled with c nm thick.	oil. The the The surface	rmomete e heat tra ed by the	er well is made of a ansfer coefficient fr the thermometer is 84	nelp of the thermometer placed a steel tube ($k = 55.8 \text{ W/mK}$), om the air to the protective we $^{\circ}$ C. Estimate the measurement of	120 ell is
protection	ve well fi and 1.5 n ² K and th	f the air st lled with c nm thick.	oil. The the The surface ture recorde	rmomete e heat tra ed by the	er well is made of a ansfer coefficient fr the thermometer is 84	steel tube ($k = 55.8 \text{ W/mK}$), om the air to the protective we	120 ell is
n protectiinm long 23.3 W/m f the tem A slab m mm/tooth	ve well fi and 1.5 n ² K and th apperature illing oper and depth	f the air st lled with community that the base occuration is can of cut 3 r	oil. The the The surface ture records the we of the we arried out on the me.	rmomete e heat tra ed by the ell is 40° n 250 m eer of the	er well is made of a ansfer coefficient fr the thermometer is 84 CC	steel tube ($k = 55.8 \text{ W/mK}$), om the air to the protective we	120 ell is error
a protectiinmm long 23.3 W/m if the tem A slab m mm/tooth	ve well fi and 1.5 n ² K and th apperature illing oper and depth	f the air st lled with community that the base occuration is can of cut 3 r	oil. The the The surface ture recorded the western out of the western. Diamet time for cordinate the surface of the western out of the surface out	rmomete e heat tra ed by the ell is 40° n 250 m eer of the	er well is made of a ansfer coefficient fr e thermometer is 84 °C	a steel tube (k = 55.8 W/mK), om the air to the protective we °C. Estimate the measurement of the MS block at a feed rate of	120 ell is error
A slab m	ve well fi and 1.5 m 2K and the operature illing operand depth m. The m	f the air st lled with commathick. The temperate at the base of the commathin of the commat	oil. The the The surface ture recorded to the western out of the western. Diamet time for corond as a specific	rmometer heat traced by the cell is 40° m 250 m ter of the mpleting	er well is made of a ansfer coefficient fr e thermometer is 84 PC em long, 100 mm w e cutter is 50 mm an one cut will be	a steel tube (k = 55.8 W/mK), om the air to the protective we C. Estimate the measurement of the did has a 20 straight teeth and rown efficiency of 34%. A regeneral	120 ell is error 0.25 tates
protectiim long 3.3 W/m the tem a slab m m/tooth 100 rp a gas tur installe	ve well fi and 1.5 m 2K and the perature silling open and depth m. The m	f the air st lled with commathick. The temperate at the base of the commathin of the commat	oil. The the The surface ture recorded to the western out of the western. Diamet time for corond as a specific	rmometer heat traced by the cell is 40° m 250 m ter of the mpleting	er well is made of a cansfer coefficient from the thermometer is 84 and a common control of 350 kJ/kg and a coefficient from the country of 350 kJ/kg and a coefficient from the	a steel tube (k = 55.8 W/mK), om the air to the protective we C. Estimate the measurement of the did has a 20 straight teeth and rown efficiency of 34%. A regeneral	120 lell is serror of the serr
A slab mam/tooth t 100 rp	ve well fi and 1.5 m ² K and the perature silling oper and depth m. The m	f the air st lled with community the temperate at the base of the community of the temperate at the base of the community of the temperate at the base of the community of the temperate at the base of the community of the temperate at the base of the temperate at the base of the temperate at the base of the temperate at the temp	oil. The the The surface ture recorded ture recorded to the western out of the western out of the man distribution of the surface of the western out of the western o	rmometer heat traced by the cell is 40° mn 250 mn error of the mpleting cell output to 51%.	er well is made of a cansfer coefficient from the thermometer is 84 and a common control of 350 kJ/kg and a coefficient from the cutter is 50 mm and one cut will be	a steel tube (k = 55.8 W/mK), om the air to the protective we occ. Estimate the measurement of the did has a 20 straight teeth and rown efficiency of 34%. A regenerate will be close to (d) 700 kJ/kg	120 lell is serror of the serr
protection protection long 3.3 W/m and 3.3	ve well fi and 1.5 m ² K and the perature silling oper and depth m. The m	f the air st lled with common thick. The temperate at the base of the common co	oil. The the The surface ture recorded ture recorded to the western out of the western out of the man distribution of the surface of the western out of the western o	rmometer heat traced by the cell is 40° mn 250 mn error of the mpleting cell output to 51%.	er well is made of a cansfer coefficient from the thermometer is 84 and a common common common common coefficient from long, 100 mm we cutter is 50 mm and one cut will be a coefficient of 350 kJ/kg and a coefficient from the coefficient fro	ide MS block at a feed rate of d has a 20 straight teeth and round feed to will be close to (d) 700 kJ/kg ed in constructions	120 lell is serror of the serr

| 5

A horizontal beam ABC 1.80 m long is pinned to a support at 'C' and supported by pin ended vertical 44. steel section of side 50 mm. Based on the critical load of the column, what should be the safe load 'Q' for column applied at 'A' with a factor of safety of 2 ? Take $E = 2 \times 10^5 \text{ N/mm}^2$. If column is 1.75 m long as shown in figure the column is of square cross-sectional

- 45. The piezometric head of a flow is
 - (a) The sum of the velocity head and datum head
 - (b) The sum of pressure head and datum head
 - (c) The sum of pressure head and velocity head
 - (d) The sum of pressure head, velocity head & datum head
- 46. Determine the frequency of vibration of the system as shown in figure. Neglect the mass of pulleys.

- 47. Two shafts are connected by means of a flange coupling to transmit torque of 25 N-m. The flanges of the coupling are fastened by four bolts of the same material at a radius of 30 mm. Find the size of the bolts if the allowable shear stress for the bolt material is 30 MPa

mm

ME: Full Length

GATE: Mock Test Paper

A metal ingot, 5 cm × 8 cm × 12 cm, at a temperature of 50°C is losing heat by natural convection to 48. air at 0°C. The vertical dimension is 12 cm. Find the coefficient of heat transfer.

Given
$$\nu = 15.89 \times 10^{-6} \text{ m}^2/\text{s}, \ k = 26.3 \times 10^{-3} \text{ W/mK}, \ Pr = 0.707, \ \beta = \frac{1}{300} \, \text{K}^{-1} \ \text{and Nu} = 0.55 (Ra)^{1/4} \, \text{W/m}^2 \text{K}$$

49. A cup 5 cm in diameter and 7.5 cm in depth is to be drawn from 1.5 mm thick drawing steel with tensile yield strength of 315 MPa. The corner radius is negligible the blank diameter

50. 20 kg/s of air at 30°C and a humidity ratio of 0.01 kg water vapour/kg air are mixed with 12 kg/s of air at 38°C and humidity ratio of 0.02 kg water vapour/kg air. If there is no external addition or removal of moisture and heat, determine humidity ratio of the resultant air stream in kg vapour/kg dry air

(a) 0.01

(b) 0.02

(c) 0.013

7

51. Steam at 300 kPa and 500°C (h = 3486.0 kJ/kg) enters a steam turbine and exists at atmospheric pressure and 350°C (h = 3175.8 kJ/kg). Heat losses in the turbine are 50 kW and the mass flow rate is 0.25 kg/s. Determine the power output of the turbine if kinetic energy losses are negligible

kW

An ideal air standard regenerative Brayton cycle is working between minimum and maximum temperature **52.** of 300 K and 1200 K respectively. Calculate the efficiency of the cycle when the operating pressure ration is 60% of the critical pressure ratio. Where the degree of regeneration becomes zero

percentage

Figure shows a stepped shaft ABCD subjected to three torques 1360 Nm, 1020 Nm and 1020 Nm. Each 53. segment of the shaft is 600 mm long. The diameter of the segments are 75 mm, 62.5 mm and 50 mm. What would be the maximum shear stress in the shaft

 N/mm^2

A sector gate in the form of circular arc of radius 5 m retains water to a height of 4m as shown in 54. the figure, calculate the magnitude of resultant force per unit length of the gate

(a) 10.99 kN

(b) 77 kN

(c) 79 kN

(d) 13 kN

ME: Full Length

GATE: Mock Test Paper

- A particle starts from rest. What is the ratio of distances covered by it in the 3rd and 5th seconds of its 55. motion?
 - (a) 3:8
- (b) 4:9
- (c) 5 : 11
- (d) 5:9
- If $\psi = 2xy$, the magnitude of the velocity vector at (2,-2) is **56.**
 - (a) $4\sqrt{2}$

- (c) -8
- (d) $\sqrt{2}$
- Water enters a counter flow, double pipe heat exchanger 15°C, flowing at the rate of 1300 kg/h. It is 57. heated by oil ($C_p = 2000 \text{ J/kgK}$) flowing at the rate of 550 kg/h. From the inlet temperature of 94°C for an area 1 m² and overall heat transfer coefficient is 1075. Find NTU
 - (a) 3.52
- (b) 2.78
- (c) 3.18
- (d) 3.78
- An oil of density 917 kg/m³ is being pumped in a pipe of diameter 15 cm. The discharge is measured **58.** as 850 L/min. The drop in pressure in a stream of 800 cm of pipeline, both ends of which are same elevation, is measured as 95 kPa. Find the viscosity of oil

- **59**. For NH₃ - CH₄ mixture system existing in two phases in equilibrium. The number of independent properties required to fix the state of system are
 - (a) 1

- (c) 3
- (d) 4
- The piston of an oil engine of area 0.0045 m² moves downward 75 mm, drawing in 0.00028 m³ of fresh **60.** air from the atmosphere. The pressure in the cylinder is uniform during the process at 80 kPa, while the atmospheric pressure is 101.325 kPa. Find the displacement work done by the air finally in the cylinder.

- A certain water heater operates under steady flow conditions receiving 4.2 kg/s water at 75°C temperature 61. enthalpy 313.93 kJ/kg. The water is heated by mixing of steam which is supplied to the water at temperature 100.2°C and enthalpy 2676 kJ/kg. The mixture leaves the heater as liquid water at temperature 100°C and enthalpy 419 kJ/kg. How much steam must be supplied to heater per hours.
 - (a) 630 kg/h
- (b) 705 kg/h
- (c) 772 kg/h
- (d) 790 kg/h

62. If $A = \begin{bmatrix} 1 & 0 & 0 \\ i & \frac{-1}{2} + \frac{i\sqrt{3}}{2} & 0 \\ 0 & 1 + 2i & \frac{-1 - i\sqrt{3}}{2} \end{bmatrix}$

then trace of A¹⁰² is

- The value of $\iint_S \vec{A} \cdot \vec{ds}$, where $\vec{A} = x^3 \hat{i} + y^3 \hat{j} + z^3 \hat{k}$ and S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$
- (a) $\frac{7\pi}{5}a^3$ (b) $\frac{32\pi}{5}a^5$ (c) $\frac{9\pi}{5}a^3$ (d) $\frac{12\pi}{5}a^5$
- If $u-v = (x-y)(x^2 + 4xy + y^2)$ and f(z) = u + iv is an analytic function of z = x + iy, f(z) in terms of z is
 - (a) $-iz^3 + c'$ (b) $z^3 + c'$
- (c) $iz^3 + c'$ (d) $-z^3 + c'$
- A random variable X has probability density function f(x) as given as

$$f(x) = \begin{cases} a + bx + cx^2 & 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

If the expected value $E(X) = \frac{1}{2}$ and $E(X^2) = \frac{2}{3}$ Pr(X < .5) is

1. Ans. (c)

Friday \rightarrow 2 days earlier

Therefore, scheduled day = Friday + 2 = Sunday

Sunday + 3 =Wednesday

Therefore, I would have been late by 3 days

- 2. Ans. (b)
- 3. Ans. (b)
- 4. Ans. (a)
- 5. Ans. (b)
- Ans. (b) 6.
- 7. Ans. (c)

Average electricity bill from January to June

$$= Rs. 980$$

:. Total electricity bill from January to May

$$= 980 \times 5 = Rs. 4900$$

(As no electricity is used in June)

Similarly, total electricity bill from August to September (as no electricity is used in July)

$$= 670 \times 2 = Rs. 1340$$

And total electricity bill from October to $= 720 \times 3 = Rs. 2160$ December

Therefore, total electricity bill from January to = 4900 + 1340 + 2160 = Rs.8400

Thus, average electricity bill for the whole year

$$=\frac{8400}{12}$$
 = Rs. 700

- Ans. (c) 8.
- 9. Ans. (b)

The sum of money that the contractor was supposed to pay for the period of an month over the stipulated time is

$$= S_n = \frac{n}{2} [2a + (n-1)d]$$

$$a = 50,000$$
; $n = 30$; $d = 4000$

$$S_{30} = \frac{30}{2} [2 \times 50,000 + (30 - 1) \times 4000]$$

$$= 15 [100,000+29 \times 4000]$$

Rs. 3240000 = Rs.32.4 lakh

Loss in the business = 10%

... Amount he received for making the flyover

$$= \frac{3240000}{0.1} = 32400,000$$

= Rs. 3.24 crores

- 10. Ans. (c)
- 11. Ans. (c)

Non-Trivial solution means infinite solutions |A| = 0 and $\rho(A) < n$

where, 'n' is the no. of variables.

12. Ans. (45)

$$\ell n \left(\sqrt{i} \right) \implies \ell n i^{1/2}$$

$$\Rightarrow \frac{1}{2} \ell ni \Rightarrow \frac{1}{2} \ell n e^{i\pi/2}$$

$$\Rightarrow \quad \frac{1}{2}\!\!\left(\frac{i\pi}{2}\right) \,\Rightarrow\, i\!\!\left(\frac{\pi}{4}\right)$$

in degrees is 45°.

13. Ans. (b)

$$\lim_{n\to\infty} \left(1 + \frac{\sin a}{n}\right)^n = 1^{\infty}$$

:. Using formulae

$$\lim_{n\to\infty} f\left(x\right)^{g\left(x\right)} \; = \; \lim_{e^{x\to a}} \!\! \left(g^{\left(x\right)}\!\!\left(f^{\left(x\right)-1}\right)\right)$$

$$\lim_{n\to\infty} \left(1+\sin\!\left(\frac{a}{n}\right)\right)^n \;=\; e^{\lim_{n\to\infty} \left(n\right)\!\left(1+\sin\!\left(\frac{a}{n}\right)\!-1\right)}$$

$$\Rightarrow \qquad e^{\lim\limits_{n\to\infty} n\cdot sin\left(\frac{a}{n}\right)} = \lim\limits_{e^{n\to\infty}} \frac{\sin a/n}{a/n}\cdot a$$

$$\Rightarrow e^{a} \left[\lim_{x \to 0} \frac{\sin x}{x} = 1 \right]$$

- 14. Ans. (a)
- **15.** Ans. (1)

$$f(x) = \int_{0}^{x} (1-t^{2})e^{-t^{2}/2}dt$$

$$f'(x) = (1-x^2)e^{-x^2/2}$$

For extremum,

$$f'(x) = 0$$

$$(1-x^2)e^{-x^2/2} = 0$$

Positive value of x = 1.

Ans. (21) N/mm^2

Section modulus of the beam section

$$Z = \frac{200^3}{6} \text{mm}^3$$

Maximum bending moment

$$M = 14 \times 2$$
$$= 28 \text{ KN-m}$$

Modulus of rupture

$$\sigma_{\rm m} = \frac{M}{Z} = \frac{28 \times 10^6}{\frac{(200)^3}{6}}$$

 $= 21 \text{ N/mm}^2$

- 17. Ans.(b)
- **18.** Ans (d)

Ans. (12 to 13) N 19.

The position of 3 cylinders as shown in figure

Primary Cranks

(a) Primary Direct Crank

(b) Primary Reverse Crank

Figure (b) indicates that the primary reverse cranks form a balanced system and therefore unbalanced primary force is due to direct cranks only & is given by

Maximum primary force = $3\frac{m}{2}$ r ω^2

$$= 3 \times \frac{2.4}{2} \times 0.08 \times \left(\frac{2\pi \times 2000}{60}\right)^{2}$$
$$= 3 \times 1.2 \times 0.08 \times 43865$$
$$= 12633 \text{ N or } 12.633 \text{ kN}$$

20. Ans.(d)

100-102 Ram Nagar, Bambala Puliya, Pratap Nagar, Tonk Road Jaipur-33 Ph.: 0141-6540911, +91-8094441777

- 21. Ans.(b)
- 22. Ans. (2)

$$E = \frac{\sigma}{\frac{dl}{l}}$$

$$\frac{dl}{l} = \frac{\sigma}{E} = \frac{50 \times 10^3}{0.5 \times 10^{-4} \times 200 \times 10^9}$$
$$= 0.005$$

Gauge factor =
$$\frac{\frac{dR}{R}}{\frac{dl}{l}} = \frac{\frac{1}{100}}{0.005} = 2$$

Ans. (900 to 930) kW 23.

$$\begin{split} \dot{m} \Bigg(h_1 + \frac{C_1^2}{2} + g Z_1 \Bigg) + \dot{Q} \\ \\ &= \dot{m} \Bigg(h_2 + \frac{C_2^2}{2} + g Z_2 \Bigg) + \dot{W} \end{split}$$

 $\dot{Q} = 0$ (adiabatic process) and $\Delta P.E. = 0$

$$h_1 + \frac{C_1^2}{2} = h_2 + \frac{C_2^2}{2} + \dot{W}$$

$$\dot{W} = C_p(T_1 - T_2) + \frac{C_1^2 - C_2^2}{2}$$

$$T_2 = T_1 \left(\frac{P_2}{P_1}\right)^{\frac{\gamma - 1}{\gamma}} = 1320 \left(\frac{1}{40}\right)^{0.285}$$

$$T_2 = 461.3 \text{ K}$$

So,

$$\dot{W} = 1.05(1320 - 461.3) + \frac{200^2 - 100^2}{2}$$
$$= 916.63 \text{ kW}$$

24. Ans. (c)

> Alternat overfeeding and starving of refrigerant flow in the evaporator a causes hunting in thermostatic expansion valve.

25. Ans. (1.3 to 1.4) N/mm^2

Limiting the hoop stress

$$\sigma_1 = \frac{Pd}{2t} = 90N / mm^2$$

$$P = \frac{2 \times 1.5 \times 90}{2000} = 1.35 \text{ N/mm}^2$$

Limiting the axial stress

$$\sigma_2 = \frac{Pd}{4t} = 60 \text{N} / \text{mm}^2$$

$$P = \frac{4 \times 1.5 \times 60}{2000} = 1.8 \text{ N/mm}^2$$

Maximum safe air pressure is = 1.35 N/mm^2

- **26.** Ans.(c)
- 27. Ans. (2)
- 28. Ans. (b)

$$\omega = \frac{2\pi \times 160}{60} = 16.75 \text{ rad/s}$$

max velocity of sliding = Angular velocity of shaft × distance between shafts

=
$$\omega \times d$$

= 16.75 × 0.018
= 0.302 m/s

- 29. Ans.(d)
- $30. \quad Ans.(b)$
- Ans. (2.6 to 2.8) mm/s

$$e = \frac{56}{2} = 28$$
 $\left[\frac{\Delta V}{I} = \rho_s \cdot \frac{l}{A}\right]$

$$MRR = \frac{e}{F} \times \frac{I}{p}$$

$$= \frac{28 \times 500 \times 1000}{96500 \times 7.8} = 18.6 \text{ mm}^3/\text{s}$$

Feed rate =
$$\frac{MRR}{A} = \frac{MRR \times \Delta V}{\rho_s \times l \times I}$$

= $\frac{18.6 \times 18}{0.5 \times 0.5 \times 500} = 2.68 \text{ mm/sec}$

32. Ans. (d)

During adiabatic cooling of moist air enthalpy of mosit air remains constant. Since constant enthalpy lines and constant wet bulb temperature lines are almost same hence wet bulb temperature also remains constant during adiabatic cooling.

- 33. Ans. (d)
- 34. Ans.(c)
- Ans. (43 to 45) kN **35.**

$$P_{avg} = 350 \text{ MPa}$$
 $F_{avg} = P_{avg} \times bL$
 $L = \sqrt{R\Delta h} = \sqrt{250 \times 2} = 22.36 \text{ mm}$
 $F_{avg} = 350 \times 300 \times 22.36$
 $= 2347800 \text{ N} = 2347.8 \text{ kN}$

Torque

$$T = F_{avg} \times \lambda L$$
= 2347.8 × 0.4 × 22.36 × 10⁻³
= 21 kNm
$$P = 2 T\omega$$
= 2×1.046 × 21 = 43.96 kW

36. Ans. (1340 to 1400) Ampere

$$t_1 = 5 \text{ mm}, t_2 = 1.5 \text{ mm}$$
 $I_1 = 10,000 \text{ Amps}, I_2 = ?$
 $MP_1 = 1400 + 273 = 1673 \text{ K}$
 $MP_2 = 660 + 273 = 933 \text{ K}$
 $t \propto Q \propto M \cdot P \propto I^2$

$$\frac{I_2}{I_1} = \sqrt{\frac{M \cdot P_2 \times t_1}{M \cdot P_1 \times t_2}} = 10000\sqrt{\frac{933 \times 5}{1673 \times 1.5}}$$
$$= 1363.28 \text{ A}$$

37. Ans. (d)

Rankine cycle has highest work ratio.

$$\tau = A \cdot \left(\frac{\partial u}{\partial y}\right)^n + B$$
 at
$$\frac{\partial u}{\partial y} = 0,$$

$$\tau = 10$$

B = 10

39. Ans (11 to 12)mm

Area of the plate

$$A = bt = 120 t mm^2$$

The average load

$$P_m = \frac{P_{max} + P_{min}}{2} = \frac{250 + 100}{2}$$
 $P_m = 175 \text{ kN}$

Average stress

$$\sigma_{\rm m} = \frac{175 \times 10^3}{120t} \text{ N/ mm}^2$$

Variable load amplitude

$$P_a = \frac{P_{max} - P_{min}}{2} = \frac{250 - 100}{2}$$
 $P_a = 75 \text{ kN}$

Variable stress amplitude

$$\sigma_{a} = \frac{75}{120t} \text{ N/mm}^2$$

Soderberg eqn.

$$\frac{\sigma_{\rm m}}{\sigma_{\rm y}} + \frac{\sigma_{\rm a}}{\sigma_{\rm e}} = \frac{1}{\rm FOS}$$

$$\frac{175 \times 10^3}{120t \times 300} + \frac{175 \times 10^3}{120t \times 225} = \frac{1}{1.5}$$

$$\frac{7.64}{t} = \frac{1}{1.5} \implies t = 11.5 \text{ mm}$$

40. Ans. (15 to 17)°C

$$\frac{T_{L} - T_{\infty}}{T_{o} - T_{\infty}} = \frac{1}{\cos h(ml)}$$

$$m = \sqrt{\frac{hP}{kA}} = \sqrt{\frac{23.3 \times \pi D}{55.8(\pi D^2)}}$$
$$= \sqrt{\frac{23.3}{55.8(0.0015)}} = 16.7$$

$$mL = (16.7)(0.12) = 2$$

$$\frac{T_L - T_{\infty}}{T_o - T_{\infty}} = \frac{1}{\cosh(2)} = \frac{1}{3.76} = 0.266$$

$$T_{\infty} = \frac{T_{L} - 0.266T_{o}}{1 - 0.266} = \frac{84 - 0.266(40)}{0.734}$$
$$= 100^{\circ}C$$

The measurement error

$$= T_{\infty} - T_{L}$$

= 100 - 84 = 16°C

Ans. (30 to 33)second 41.

Length of approach in slab milling is

$$L_{A} = \sqrt{d(D-d)} = \sqrt{3(50-3)}$$
$$= 18.87$$

Time for one cut

$$= \frac{L + L_A}{f} = \frac{250 + 11.87}{0.25 \times 20 \times \frac{100}{60}}$$

$$= 31.5 \text{ sec}$$

42. Ans. (a)

> In case of gas turbine, regeneration decreases the heat supplied. It has no effect an power output.

43. Ans. (c)

Ans. (55 to 56) kN 44.

Given

$$l = 1.75 \text{ m} = 1750 \text{ mm}$$

$$b = d = 50 \text{ mm}$$

$$I = \frac{(50)^4}{12}$$

Critical load

$$P = \frac{\pi^2 EI}{\ell^2}$$

$$P = \frac{\pi^2 \times 2 \times 10^5}{(1750)^2} \times \frac{(50)^4}{12}$$

$$= 335.70 \text{ kN}$$

Safe load for column = $\frac{P}{FOS}$

$$= \frac{335.70}{2}$$
$$= 167.85 \text{ kN}$$

For the equilibrium of the beam, ABC, taking moment about C,

$$Q \times 1.8 = 167.85 \times 10^3 \times 0.6$$

 $Q = 55.95 \text{ kN}$

45. Ans (b)

Ans. (b) 46.

100-102 Ram Nagar, Bambala Puliya, Pratap Nagar, Tonk Road Jaipur-33 Ph.: 0141-6540911, +91-8094441777

ENGINEERS ACADEMY Email: info@engineersacademy.org Website: www.engineersacademy.org

Force in each spring = 2w

Deflection on mass m,

 $\Delta = 2$ (deflection of spring 1 + deflection of spring 2)

$$= 2\left(\frac{2w}{S_1} + \frac{2w}{S_2}\right)$$

$$= 4mg\left[\frac{S_1 + S_2}{S_1S_2}\right]$$

$$\omega_n = \sqrt{\frac{g}{\Delta}} = \sqrt{\frac{g(S_1S_2)}{4mg(S_1 + S_2)}}$$

$$= \sqrt{\frac{S_1S_2}{4(S_1 + S_2)m}}$$

47. Ans (2.70 to 3.20)mm

Shearing load carried by flange coupling

$$P_s = \frac{T}{R_P} = \frac{25 \times 10^3}{30}$$

$$P_{s} = 833.3 \text{ N}$$

d_c = Core diameter of the bolt

Resisting load on the bolts

$$P = \frac{\pi}{4} (d_c)^2 (\tau) n$$

$$P = \frac{\pi}{4} (d_c)^2 (30)(4)$$

$$P = 94.26 (d_s)^2$$

$$(d_c)^2 = \frac{833.3}{94.26} = 8.84$$

$$d_c = 2.97 \text{ mm}$$

48. Ans. (8 to 9) W/m^2K

$$L_c = \frac{L_H L_V}{L_H + L_V} = \frac{8 \times 12}{8 + 12} = 4.8 \text{ cm}$$

$$R_a = G_r \times P_r = \frac{g\beta L^3 (T_s - T_{\infty})}{v^2} \times P_r$$

$$= \frac{(9.81)\left(\frac{1}{300}\right)(0.048)^3(50-0)}{(15.89\times10^{-6})^2}\times0.707$$

$$R_a = 7.16 \times 10^5$$

Nu =
$$0.55 \text{ Ra}^{1/4} = 0.55(7.16 \times 10^5)^{1/4}$$

= 15.99

$$h = \frac{15.99 \times (26.3 \times 10^{-2})}{0.048}$$

$$= 8.77 \text{ W/m}^2\text{K}$$

49. Ans. (13 to 14) cm

Cup diameter = 5 cm,

Depth =
$$7.5 \text{ cm}$$
,

Thickness = 1.5 mm, $\sigma_v = 315 \text{ MPa}$

Blank diameter =
$$\sqrt{d^2 + 4dh}$$

$$= \sqrt{5^2 + 4 \times 5 \times 7.5}$$

$$= 13.23 \text{ cm}$$

50. Ans. (c)

Section-I

$$m_1 = 20 \text{ kg/sec}$$

$$\omega_1 = 0.01 \left(\frac{\text{kg vapour}}{\text{kg dry air}} \right)$$

$$T_1 = 30^{\circ}C$$

Water balance

$$m_1\omega_1 + m_2\omega_2 = m_3\omega_3$$

$$20 \times 0.01 + 12 \times 0.02 = 32 \omega_3$$

Section-II

$$m_2 = 12 \text{ kg/sec}$$

$$\omega_2 = 0.02 \left(\frac{\text{kg vapour}}{\text{kg dry air}} \right)$$

$$T_2 = 38^{\circ}\text{C}$$

$$m_1 + m_2 = m_3$$

$$20 + 12 = m_3$$

$$m_3 = 32 \text{ kg/sec}$$

$$\omega_3 = \frac{0.2 + 0.24}{32} = 0.01375 \frac{\text{kg vapour}}{\text{kg dry air}}$$

51. Ans. (27 to 28) kW

$$\begin{split} & m_1 h_1 - Q = m_2 h_2 + W \\ & 0.25 \times 3486 - Q = 0.25 \times 3175.8 + W \\ & W = 0.25(3486 - 3175.8) - 50 \\ & = 27.55 \text{ kW} \end{split}$$

52. Ans. (55 to 58) percentage

$$\begin{split} (r_p)_{critical} &= \left(\frac{T_{max}}{T_{min}}\right)^{\frac{\gamma}{2(\gamma-1)}} = \left(\frac{1200}{300}\right)^{\frac{1.5}{2\times.4}} \\ &= (4)^{1.75} = 11.313 \\ r_p &= 0.6 \; r_{pc} = 0.6 \times 11.313 = 6.78 \end{split}$$

(η_{Brayton})_{ideal regenerative}

$$= 1 - \frac{T_{\text{min}}}{T_{\text{max}}} (r_{\text{p}})^{\frac{\gamma - 1}{\gamma}} = 1 - \frac{300}{1200} (6.78)^{\frac{0.4}{1.4}}$$
$$= 0.25 (6.78)^{0.2857} = 0.568$$
$$= 56.8\%$$

53. Ans. (42 to 43) N/mm^2

Torque on the segment AB

$$= 1020+1020+1360 = 3400 \text{ Nm}$$

Torque on the segment BC

$$= 1020+1020 = 2040 \text{ N.m}$$

Torque on the segment CD

$$= 1020 \text{ Nm}$$

Maximum shear stress in AB

$$= \frac{16 \times 3400 \times 10^3}{\pi (75)^3} = 41.05 \text{ N/mm}^2$$

Maximum shear stress in BC

$$= \frac{16 \times 2040 \times 10^3}{\pi (62.5)^3} = 42.56 \text{ N/mm}^2$$

Maximum shear stress in CD

$$= \frac{16 \times 1040 \times 10^3}{\pi (50)^3} = 41.56 \text{ N/mm}^2$$

So we have maximum shear stress in the $shaft = 42.56 \text{ N/mm}^2$

That is in BC portion

54. Ans (c)

$$\sin\theta = \frac{4/2}{5}$$

$$\phi = 23.578^{\circ}$$

$$F_{H} = \rho g(A)_{\text{projected}} \times \overline{h}$$

$$= 9.81 \times 10^{3} \times (4 \times 1) \times \frac{4}{2}$$

$$= 78.480 \text{ kN}$$

 F_v = Weight of water displaced by gate = ρg[Area of OMSN–Triangle area

of OMN]

$$F_V = 10.99 \text{ kN}$$

 $F_R = \sqrt{F_H^2 + F_V^2} = 79.08 \text{ kN}.$

55. Ans. (d)

We know

$$S_n = u + \frac{a}{2} (2n-1)$$

$$S_3 = 0 + \frac{a}{2} [(2 \times 3) - 1]$$
Similarly
$$S_3 = \frac{5a}{2}$$

$$S_5 = 0 + \frac{a}{2} [(2 \times 5) - 1]$$

$$S_5 = \frac{9a}{2}$$
Ratio is
$$\frac{5a}{2} : \frac{9a}{2} \implies 5:9$$

100-102 Ram Nagar, Bambala Puliya, Pratap Nagar, Tonk Road Jaipur-33 Ph.: 0141-6540911, +91-8094441777

56. Ans (a)

$$\psi = 2xy$$

$$u = -\frac{\partial \psi}{\partial y} = -2x = -4$$

$$v = \frac{\partial \psi}{\partial x} = 2y = -4$$

$$v = \sqrt{u^2 + v^2} = 4\sqrt{2}$$

57. Ans. (a)

$$C_c = \dot{m}_c C_c = \frac{1300(4186)}{3600}$$

$$C_h = \dot{m}_h C_h = \frac{(500)(2000)}{3600}$$

$$C_{min} = C_h = 305.55 \text{ W/K}$$

$$R = \frac{C_{\min}}{C_{\max}} = \frac{305}{1511.61}$$

$$NTU = \frac{UA}{C_{min}} = \frac{1075 \times 1}{305.55} = 3.52$$

58. Ans. (0.10 to 0.12) Pa-s

$$\overline{u} = \frac{Q}{A} = \frac{0.850}{\frac{\pi}{4} \times 0.15^2}$$

$$\overline{u} = 0.8017$$

$$h_f = \frac{\Delta P}{Qg} = \frac{95 \times 10^3}{917 \times 9.81} = 10.56 \text{ m}.$$

$$h_f = \frac{32\mu \overline{u}L}{\rho g D^2}$$

$$\mu = 0.104 \text{ Pa-s}$$

59. Ans. (b)

We know that

$$P + F = C + 2$$

 $2 + F = 2 + 2$

$$F = 2$$

So, 2 properties required.

60. Ans. (27) Joule

Here we have to find out the work done on the air in the cylinder.

Work = Change in volume due to piston displacement × Pressure inside the piston

$$= 0.0045 \times 0.075 \times 80 \times 10^3$$

= 27 Joule

61. Ans. (b)

$$4.2 \times 313.93 + m (2676)$$

= $419 (4.2 + m)$
 $m = 705.6 \text{ kg/h}$

62. Ans. (3)

A is a lower triangular matrix. For any triangular matrix A if diagonal elements are (a, b, c) than the diagonal elements of Aⁿ are (aⁿ, bⁿ, cⁿ).

:. Diagonal elements of A¹⁰² are

$$1^{102}$$
, $\left(\frac{-1}{2} + \frac{i\sqrt{3}}{2}\right)^{102}$, $\left(\frac{-1 - i\sqrt{3}}{2}\right)^{102}$

$$\left(\frac{-1}{2} + \frac{i\sqrt{3}}{2}\right)^{102} \implies \left(e^{i2\pi/3}\right)^{102} \not = e^{i68\pi}$$

$$\Rightarrow \cos 68\pi + i\sin 68\pi = 1$$

$$\left(\frac{-1}{2} - \frac{i\sqrt{3}}{2}\right)^{102} \Rightarrow \left(e^{-i2\pi/3}\right)^{102} \Rightarrow e^{-68\pi i}$$

$$= \cos(-68\pi) - i\sin 68\pi$$

$$= 1$$

 \therefore the diagonal elements of (A)¹⁰² are 1, 1 and 1.

$$\therefore$$
 trace (A) = 1 + 1 + 1 = 3

 $1^{102} = 1$

63. Ans. (d)

S is a surface of the sphere, enclosing a volume therefore Gauss divergence theorem is applicable.

$$\iint\limits_{S} \overrightarrow{A} \cdot \overrightarrow{ds} \ = \iiint\limits_{V} \ \Big(div \overrightarrow{A} \Big) dV$$

100-102 Ram Nagar, Bambala Puliya, Pratap Nagar, Tonk Road Jaipur-33 Ph.: 0141-6540911, +91-8094441777

ME: Full Length

GATE: Mock Test Paper

 $\Rightarrow \iiint \left(\frac{\hat{i}\partial}{\partial x} + \frac{\hat{j}\partial}{\partial y} + \frac{\hat{k}\partial}{\partial z}\right) \left(x^3\hat{i} + y^3\hat{j} + z^3\hat{k}\right) dV$

$$\Rightarrow \iiint_{V} (3x^3 + 3y^2 + 3z^2) dV$$

$$\Rightarrow 3 \iiint (x^2 + y^2 + z^2) dV$$

In spherical system

$$x = r\sin\theta\cos\phi$$
; $y = r\sin\theta\sin\phi$

$$z = r \cos \theta$$

$$dV = r^2 \sin \theta dr d\theta d\phi$$

 $3\iiint r^2(r^2\sin\theta dr d\theta d\phi)$ [Breaking the whole

volume into 8 octant]

$$\Rightarrow 3 \times 8 \int_{0}^{\pi/2} d\phi \cdot \int_{0}^{\pi/2} \sin\theta d\theta \int_{0}^{a} r^{4} \cdot dr$$

$$\Rightarrow 24 \times \frac{\pi}{2} \cdot \left(\cos\theta\right) \Big|_0^{\pi/2} \cdot \frac{r^5}{5} \Big|_0^a = \frac{12\pi}{5} a^5$$

64. Ans. (a)

$$u-v = (x-y)(x^2 + 4xy + y^2)$$

$$f(z) = u + iv$$

$$if(z) = iu - v$$

$$F(z) = f(z) \cdot (i+1) = \underbrace{(u-v)}_{u} + \underbrace{i(u+v)}_{v}$$

$$= u + iv.$$

$$u = (x - y)(x^2 + 4xy + y^2)$$

$$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} = 3\mathbf{x}^2 + 6\mathbf{x}\mathbf{y} - 3\mathbf{y}^2$$

$$\phi_1 = \frac{\partial \mathbf{u}}{\partial \mathbf{x}}\Big|_{(z,0)} = 3z^2$$

$$\frac{\partial u}{\partial y} = 3x^2 - 6xy - 3y^2$$

$$\phi_2 = \left. \frac{\partial u}{\partial y} \right|_{(z,0)} = 3z^2$$

$$F(z) = \int \phi_1 dz - i \int \phi_1 dz$$

$$\Rightarrow \int 3z^2 dz - i \int 3z^2 dz + c$$

$$f(z)(1+i) = z^3 - iz^3 + c$$

= $z^3(1-i) + c$

$$f(z) = \frac{z^3}{(1+i)} + \frac{c}{(1+i)}$$

$$\Rightarrow \frac{z^3 \left(1-i\right) \left(1-i\right)}{\left(1+i\right) \left(1-i\right)} + \frac{c \left(1-i\right)}{\left(1+i\right) \left(1-i\right)}$$

$$\Rightarrow \ \frac{z^3 \left(1 - 1 - 2i\right)}{1 + 1} + \frac{c \left(1 - i\right)}{2}$$

$$\Rightarrow$$
 $-iz^3 + c'$

65. Ans. (0.5)

$$\int_{0}^{1} f(x) \cdot dx = 1 \quad \text{(Total probability} = 1\text{)}$$

$$\Rightarrow \int_{0}^{1} (a + bx + cx^{2}) dx = 1$$

$$ax + \frac{bx^2}{2} + \frac{cx^3}{3}\bigg|_{0}^{1} = 1$$

$$\Rightarrow \qquad a + \frac{b}{2} + \frac{c}{3} = 1$$

$$\Rightarrow 6a + 3b + 2c = 6$$

...(1) $E(X) = \frac{1}{2}$

ME: Full Length

GATE: Mock Test Paper

...(2)

19

$$\int_{0}^{1} xf(x)dx = \frac{1}{2}$$

$$\Rightarrow \int_{0}^{1} x (a + bx + bx^{2}) dx = \frac{1}{2}$$

$$\Rightarrow \frac{ax^2}{2} + \frac{bx^3}{3} + \frac{cx^4}{4} \Big|_{0}^{1} = \frac{1}{2}$$

$$\Rightarrow \frac{a}{2} + \frac{b}{3} + \frac{c}{4} = \frac{1}{2}$$

$$\Rightarrow$$
 $6a + 4b + 3c = 6$

$$E(X^2) = \frac{2}{3}$$

$$\int_{0}^{1} x^{2} \cdot \left(a + bx + cx^{2}\right) dx = \frac{2}{3}$$

$$\Rightarrow \frac{a}{3} + \frac{b}{4} + \frac{c}{5} = \frac{2}{3}$$

$$\Rightarrow 20a + 15b + 12c = 40$$
 ...(3)

$$a = 11$$
; $b = -60$, $c = 60$

$$\Rightarrow \int_{0}^{.5} f(x) \cdot dx = \int_{0}^{.5} (11 - 60x + 60x^{2}) dx$$

$$11x\Big|_0^{.5} - \frac{60}{2}x^2\Big|_0^{.5} + \frac{60}{3}x^3\Big|_0^{.5}$$

$$\Rightarrow \frac{11}{2} - 30 \times \frac{1}{4} + 20 \times \frac{1}{8}$$

$$\Rightarrow \frac{11}{2} - \frac{15}{2} + \frac{5}{2} = \frac{11}{2} - \frac{10}{2} = \frac{1}{2}$$

$$= 0.5$$